Fiscal Unit/Academic Org
Administering College/Academic Group
Co-adminstering College/Academic Group
Semester Conversion Designation

Current Program/Plan Name
Proposed Program/Plan Name
Program/Plan Code Abbreviation
Current Degree Title

Chemistry - D0628
Arts And Sciences

Converted with minimal changes to program goals and/or curricular requirements (e.g., sub-
plan/specialization name changes, changes in electives and/or prerequisites, minimal changes in overall structure of program, minimal or no changes in program goals or content)
Chemistry
Chemistry Bachelor of Arts major
CHEM-BA
Bachelor of Arts

Credit Hour Explanation

Program credit hour requirements		A) Number of credit hours in current program (Quarter credit hours)	B) Calculated result for 2/3rds of current (Semester credit hours)	C) Number of credit hours required for proposed program (Semester credit hours)	D) Change in credit hours
Total minimum credit hours required for completion of program		44	29.3	35	5.7
Required credit hours offered by the unit	Minimum	34	22.7	29	6.3
	Maximum	44	29.3	35	5.7
Required credit hours offered outside of the unit	Minimum	0	0.0	0	0.0
	Maximum	10	6.7	6	0.7
Required prerequisite credit hours not included above	Minimum	45	30.0	30	0.0
	Maximum	45	30.0	30	0.0

Explain any change in credit hours if the difference is more than 4 semester credit hours between the values listed in columns B and C for any row in the above table
Some of our laboratory courses (221 to 2210,541 to 4410) expanded from one quarter to one semester, but their credit hours remained constant as their contact hours per week were invariant.

Program Learning Goals

Note: these are required for all undergraduate degree programs and majors now, and will be required for all graduate and professional degree programs in 2012. Nonetheless, all programs are encouraged to complete these now.

Program Learning Goals

- 1. Students solve state-of-the-art chemistry problems, working both individually and in groups, and these problems will exemplify current disciplinary and interdisciplinary principles as well as modern pedagogical practice.
- 2. Students develop effective skills in oral and written communication of scientific knowledge.
- 3. Students plan experimental procedures, carry out chemical procedures, use laboratory equipment, analyze data and prepare laboratory reports that reinforce current chemical practices.
- 4. Students follow safe practices in the laboratory and demonstrate scientifically ethical practices.
- 5. Students retrieve information from the chemical literature, and become proficient in online database searching.
-6.Students use modern computer software for graphing, manipulation of symbolic mathematical expressions, and quantum chemical calculations.

Assessment plan includes student learning goals, how those goals are evaluated, and how the information collected is used to improve student learning. An assessment plan is required for undergraduate majors and degrees. Graduate and professional degree programs are encouraged to complete this now, but will not be required to do so until 2012.

Is this a degree program (undergraduate, graduate, or professional) or major proposal? Yes
Does the degree program or major have an assessment plan on file with the university Office of Academic Affairs? Yes
Summarize how the program's current quarter-based assessment practices will be modified, if necessary, to fit the semester calendar. No modifications are planned or required to fit the semester calendar.

Program Specializations/Sub-Plans

If you do not specify a program specialization/sub-plan it will be assumed you are submitting this program for all program specializations/sub-plans.

Pre-Major

Does this Program have a Pre-Major? No

Attachments

- Chemistry_BA_major_v4.pdf: Chemistry BA major
(Program Proposal. Owner: Hadad,Christopher Martin)
- Chemistry BA cover letter.doc: NMS Division of Arts and Sciences cover letter
(Letter from the College to OAA. Owner: Andereck,Claude David)

Comments

Workflow Information

Status	User(s)	Date/Time	Step
Submitted	Hadad,Christopher Martin	03/30/2011 06:53 PM	Submitted for Approval
Approved	Hadad,Christopher Martin	03/30/2011 06:53 PM	Unit Approval
Revision Requested	Andereck, Claude David	03/31/2011 12:12 PM	College Approval
Submitted	Hadad,Christopher Martin	03/31/2011 11:25 PM	Submitted for Approval
Approved	Hadad,Christopher Martin	03/31/2011 11:27 PM	Unit Approval
Revision Requested	Andereck,Claude David	04/05/2011 01:17 PM	College Approval
Submitted	Hadad,Christopher Martin	04/11/2011 02:22 PM	Submitted for Approval
Approved	Hadad,Christopher Martin	04/11/2011 02:23 PM	Unit Approval
Revision Requested	Andereck,Claude David	04/14/2011 10:32 AM	College Approval
Submitted	Hadad,Christopher Martin	04/16/2011 03:02 PM	Submitted for Approval
Approved	Hadad,Christopher Martin	04/16/2011 03:03 PM	Unit Approval
Approved	Andereck,Claude David	04/19/2011 11:40 AM	College Approval
Pending Approval	Nolen, Dawn Jenkins,Mary Ellen Bigler Meyers,Catherine Anne Vankeerbergen,Bernadet te Chantal Hanlin,Deborah Kay	04/19/2011 11:40 AM	ASCCAO Approval

Larry Krissek
Chair, Arts and Sciences CCI

Dear Larry:

It is a pleasure to forward to you the proposal for the Bachelor of Arts in Chemistry under semesters. The program has been converted with minimal revision. There have been changes to the laboratory courses, the most important being to allow students to take the organic chemistry laboratories concurrently with the lectures. A second important change has been to offer a version of organic chemistry for majors, in addition to the standard and honors versions-this had already occurred for the introductory sequence.

Beyond my own review of the documents, the proposal has been discussed by colleagues from other NMS units at a meeting on April 5, 2011. Feedback from these discussions has been incorporated in the proposal.

If you have any questions, I would be happy to address them.
Sincerely,

David Andereck
Professor of Physics
Associate Dean of Natural and Mathematical Sciences, College of Arts and Sciences

Department of Chemistry
Newman and Wolfrom Laboratory 100 West $18^{\text {th }}$ Avenue
Columbus, OH 43210-1185
www.chemistry.ohio-state.edu
April 11, 2011

To: University Semester Conversion Committees

Re: Conversion of Undergraduate Major (B.A. and B.S.) and Minor Programs in Chemistry

The Department of Chemistry currently offers a Bachelor of Arts (BA) and a Bachelor of Science (BS) degree as part of our majors program, along with a minor in Chemistry. Our currently offered majors programs prepare students for a variety of careers, with the BA degree being less intensive in required chemistry courses, thereby offering opportunities for undergraduate students to expand their schedules with interdisciplinary courses. Historically, our BA degree has been the most popular with students who are intending to pursue preprofessional programs (pre-medicine, pre-dental, pre-veterinary, pre-pharmacy, pre-optometry, pre-law, etc) or for chemistry-related employment, including sales and marketing. The BS degree requires more chemistry and mathematics courses and is better preparation for a student going off to graduate school in a chemically related discipline (chemistry, biochemistry, pharmacy, etc) or for employment in chemistry (pharmaceutical or materials chemistry). While there is some variation from year to year, there are about 450 chemistry majors across all ranks in 2011, and approximately 50% of them are intending on the BA degree while 50% are working towards the BS degree.

The American Chemical Society (ACS: www.acs.org) provides guidelines for the educational preparation for BS degrees in Chemistry, and the department is currently certified to comply with those guidelines. The ACS only provides guidelines for BS Chemistry degrees. For some institutions, there are significant guidelines as to contact hours by instructors and so on; however, for a large university like Ohio State, the most important aspects of the guidelines are a minimum amount of hours (400) in the chemistry laboratory across the entire BS degree (but excluding first-year general chemistry), a minimum exposure to laboratory experience in 4 of the 5 major areas of chemistry (analytical, biological, inorganic, organic and physical) as well as lecture instruction in all 5 areas.

On a yearly basis, the department provides an update report to the ACS as to our current program and its requirements, and on a 5-year schedule, we re-apply for re-certification of our major programs. Thus, upon graduation, our BS majors can receive a certified ACS degree if they comply with the ACS requirements. Between $25-50 \%$ of our BS majors per year receive ACS certified degrees.

Our program continues to grow, with approximately 200% more chemistry majors as new first quarter freshmen (NFQFs) in autumn 2010 as compared to a typical number of 35-40 incoming students in the 1990s.

The process for the conversion of our undergraduate major and minor programs began in summer 2010 with many discussions with our faculty and teaching staff. The courses were discussed at numerous meetings of the faculty at large as well as the Undergraduate Curriculum Committee, chaired by the Vice Chair for Undergraduate Studies (Christopher Hadad). On December 10, 2010, the Undergraduate Curriculum Committee unanimously voted to adopt the envisioned programs presented here for the revised undergraduate programs under semesters. Then, the faculty voted on the same programs at a January 19, 2011 faculty meeting and voted 25 in favor, 0 against and 0 abstain to adopt these revisions to our programs.

The details of these revised programs are provided in the accompanying documentation.
If you have any questions, please contact Christopher Hadad at (614) 292-1204 or hadad.1@osu.edu.

Sincerely,

Malcolm H. Chisholm
Chair and Distinguished University Professor
Department of Chemistry

Christopher M. Hadad
Vice Chair for Undergraduate Studies Department of Chemistry

Program Rationale Statement (Bachelor of Arts degree in Chemistry)

The revised program for the Bachelor of Arts (BA) degree in Chemistry is a relatively straightforward conversion of our existing BA degree under quarters. Our learning goals and outcomes have been abbreviated in terms of language as compared to the current assessment plan; however, the goals are relatively invariant.

Approximately half of our current majors are working towards the BA degree. We maintain core experiences in general, analytical, organic, and physical chemistry. Inorganic chemistry and biochemistry are elective courses. Exposure to biochemistry is strongly encouraged and would fulfill an advanced science elective, as would research experience. Advanced science electives can be fulfilled by pre-professional students who require specific courses in molecular genetics or biochemistry. Relative to our BA degree under quarters, we continue to require similar content in mathematics (through calculus, Math 1152) and a year of physics (1200-1201).

The most significant changes to our program relate to our laboratory courses. Many of our laboratory courses (for example, analytical, inorganic and physical chemistry courses) were onequarter long offerings, and these quarter offerings are now expanded to one-semester courses (analytical: 2210; physical: 4410). Our organic laboratory courses were two-quarter sequences (254-255), but previously, required a pre-requisite one-quarter long lecture course (251). With semesters, we cannot require this pre-requisite lecture course, and our semester organic lab offerings (2540-2550) must be offered concurrent with lecture (2510-2520 or 2610-2620 or $2910 \mathrm{H}-2920 \mathrm{H}$). Thus, these lab offerings had to be adjusted in terms of our current two 3-hour (or 4-hour) lab meetings per week to only be one 3-hour (or 4-hour) lab meeting per week.

Our physical chemistry series for the BA major was a two-quarter sequence (520-521, 3 credit hours each) and has been converted to a two-semester sequence (4200-4210, 3 credit hours each).

Overall, our new semester plan is commensurate with semester offerings by peer institutions.
Relative to the BS degree, the BA chemistry major would have less mathematics and the noncalculus version of physics as required courses. As with our quarter curriculum, the calculus version of physics is an option.

Another change is an extension of our current effort to have a majors-only version of our highenrollment courses. Until only recently, our Chemistry majors have been able to take our Honors sequence $(201 \mathrm{H}-202 \mathrm{H}-203 \mathrm{H})$ or the regular sequence (121-122-123) of general chemistry. In 2009, we created a new general chemistry sequence for chemistry (and biochemistry) majors: 161-162-163. These options have been maintained for general chemistry under semesters (honors, majors-only, and regular sequences). Organic chemistry has been a similar challenge with our $100+$ chemistry majors immersed in a sea of $1500+$ (predominantly pre-professional) students. While Honors organic chemistry was an option, there was no majors-only version of organic chemistry. For semesters, we have created a 2610-2620 organic sequence for chemistry (and biochemistry) majors, along with retention of our honors ($2910 \mathrm{H}-2920 \mathrm{H}$) and regular (2510-2520) sequences. We anticipate that content of pertinent relevance to chemistry (and
biochemistry) majors will be provided in the majors-only sequence (for example, state-of-the-art methodologies in carbon-carbon bond-forming reactions as well as asymmetric or catalytic processes).

We do not have specializations or subprograms for our BA degree; instead, from one-on-one discussions between the undergraduate student and our chemistry advisors, we create the ideal program of courses that will cater to the specific interests of the student. For example, a chemistry major who plans to attend medical school would be advised to take some additional courses in molecular genetics and biochemistry prior to graduation. Those courses would count as advanced science electives in the junior and senior years.

Research remains a highly recommended and encouraged science elective.
With regard to the four-year plan, the Bachelor of Arts curriculum is intended for students who want to have a background in chemistry as a basis for future work in other areas of science, such as the life sciences, or in such professional areas as medicine or veterinary medicine. Chemistry $1610-1620$ is the recommended general chemistry sequence for chemistry majors who present high school chemistry for entrance, although qualified students are strongly urged to take the honors general chemistry sequence, Chemistry $1910 \mathrm{H}-1920 \mathrm{H}$, instead. (Chemistry 1210 1220 are acceptable, but are not the preferred sequence for chemistry majors.)

Organic Chemistry and Quantitative Analysis 2210 (or 2210 H) are taken in the second year. As with general chemistry, Chemistry $2610-2620$ is the recommended organic chemistry lecture sequence for chemistry majors, although qualified students are strongly urged to take the honors sequence, Chemistry $2910 \mathrm{H}-2920 \mathrm{H}$, instead. (Chemistry $2510-2520$ are acceptable, but are not the preferred organic lecture sequence for chemistry majors.) The Organic Chemistry lab experience is either the $2540-2550$ sequence or the honors version $(2940 \mathrm{H}-2950 \mathrm{H})$.

Physical Chemistry 4200-4210 and Physical Chemistry Laboratory 4410 are required; Chemistry $4300-4310$ may be taken instead of $4200-4210$ with the proper math prerequisite. The major is completed by 9 credit hours of advanced science electives which must include at least 3 credit hours of chemistry courses. Advanced science electives must be approved by the undergraduate chemistry advisors. Examples of science electives include: any un-required, graded 4000 - 6000 level courses in Chemistry; 4000 or 5000 level courses in Astronomy, Biochemistry, Plant Biology, Molecular Genetics, Earth Sciences, Microbiology, Physics, and EEOB; and most courses in Mathematics at the $2000-4000$ level. Not more than six hours of undergraduate research (Chemistry 4998/4999, or honors versions) may be used to fulfill the science elective requirement.

While we show a typical sequence of courses, we will offer many of these course offerings in both the autumn and spring quarters so that students can adjust their schedules for their particular needs. We anticipate that an undergraduate student who starts with general chemistry in their first year will have little difficulty to graduate in 4 years.

Bachelor of Arts Degree in Chemistry - Typical Plan for Students with 4 Years on Semesters

Freshman Year (Semesters)				Total
Autumn		Spring		
General Chemistry 1 (1910H, 1610, 1210)	5	General Chemistry 2 (1920H, 1620, 1220)	5	
Calculus 1 (Math 1151)	5	Calculus 2 (Math 1152)	5	
GE Elective (e.g. biological sciences)	4	GE Elective	3	
GE Elective	3	GE Elective	3	
Survey	1			
	18		16	34
Sophomore Year (Semesters)				
Autumn		Spring		
Analytical Chemistry 1 ($2210 \mathrm{H}, 2210$)	5	Organic Chemistry 2 (2920H, 2620, 2520)	4	
Organic Chemistry 1 (2910H, 2610, 2510)	4	Organic Chemistry Laboratory 2 (2950H, 2550)	2	
Organic Chemistry Laboratory 1 (2940H, 2540)	2	Introductory Physics II (1201 or 1251)	5	
Introductory Physics I (1200 or 1250)	5	GE Elective	3	
	16		14	30
Junior Year (Semesters)				
Autumn		Spring		
Physical Chemistry 1 (4200)	3	Physical Chemistry 2 (4210)	3	
Advanced Chemistry Elective	3	Physical Chemistry Laboratory (4410)	3	
Elective	3	Elective	3	
GE Elective	3	GE Elective	3	
		GE Elective	3	
	12		15	27
Senior Year (Semesters)				
Autumn		Spring		
Advanced Science Elective (e.g. Biochem 4511 ${ }^{\text {a }}$)	3	Advanced Science Elective	3	
Elective	3	Elective	3	
Elective	3	GE Elective	3	
GE Elective	3	GE Elective	3	
GE Elective	3	GE Elective	3	
	15		15	30
${ }^{\text {a }}$ Biochemistry $4511=4$ credit hours				121

Bachelor of Arts Degree in Chemistry - Plan for Students with 1 Year on Quarters \& 3 Years on Semesters

Bachelor of Arts Degree in Chemistry - Plan for Students with 2 Years on Quarters \& 2 Years on Semesters

Bachelor of Arts Degree in Chemistry - Plan for Students with 3 Years on Quarters \& 1 Year on Semesters

Bachelor of Arts Chemistry Courses for Semesters

Title	Quarter Course Number	Quarter Credits	Semester Course Number	Semester Credits	$\begin{gathered} \text { Course Information } \\ (L=\text { lecture, } \\ R=\text { recitation, } B=l a b) \end{gathered}$	Comments
Pre-requisite Courses for B.A. Chemistry degree						
General Chemistry 1	121	5	$\begin{aligned} & 1210 \\ & 1220 \end{aligned}$	5	$3 \mathrm{hrL}, 1 \mathrm{hr} \mathrm{R}, 1 \times 3 \mathrm{hrB}$ $3 \mathrm{hrL}, 1 \mathrm{hr} \mathrm{R}, 1 \times 3 \mathrm{hr}$ B	simple conversion (GEC-lab)
General Chemistry 2	122	5				
General Chemistry 3	123	5				
General Chemistry for Majors 1	161	5	$\begin{aligned} & 1610 \\ & 1620 \end{aligned}$	55	$3 \mathrm{hrL}, 1 \mathrm{hr} \mathrm{R}, 1 \times 3 \mathrm{hr} \mathrm{B}$ $3 \mathrm{hrL}, 1 \mathrm{hr} \mathrm{R}, 1 \times 3 \mathrm{hr} \mathrm{B}$	simple conversion (GEC-lab)
General Chemistry for Majors 2	162	5				
General Chemistry for Majors 3	163	5				
Honors General Chemistry 1	201H	5	$\begin{aligned} & 1910 \mathrm{H} \\ & 1920 \mathrm{H} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$3 \mathrm{hrL}, 1 \mathrm{hr} \mathrm{R}, 1 \times 3 \mathrm{hr} \mathrm{B}$ $3 \mathrm{hrL}, 1 \mathrm{hr} \mathrm{R}, 1 \times 3 \mathrm{hr} \mathrm{B}$	simple conversion (GEC-lab)
Honors General Chemistry 2	202H	5				
Honors General Chemistry 3	203H	5				
Required Core Chemistry Courses for B.A. Chemistry degree						
Analytical Chemistry 1: Quantitative Analysis	221	5	2210	5	$3 \mathrm{hrL}, 1 \mathrm{hr} \mathrm{R} ,1 \times 4 \mathrm{hr} \mathrm{B}$	simple conversion ($2 \times 4 \mathrm{hr}$ B, qtr to $1 \times 4 \mathrm{hr}$ B, sem)
Honors Analytical Chemistry 1: Quantitative Analysis	221H	5	2210H	5	$3 \mathrm{hrL}, 1 \mathrm{hr} \mathrm{R} ,1 \times 4 \mathrm{hr} \mathrm{B}$	simple conversion ($2 \times 4 \mathrm{hr}$ B, qtr to 1×4 hr B, sem)
Organic Chemistry 1	251	4	$\begin{aligned} & 2510 \\ & 2520 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 3 \mathrm{hrL} \text { L, } 1 \mathrm{hr} \mathrm{R} \\ & 3 \mathrm{hrL}, 1 \mathrm{hr} \mathrm{R} \end{aligned}$	simple conversion
Organic Chemistry 2	252	4				
Organic Chemistry 3	253	4				
Organic Chemistry Laboratory 1	254	3	2540	2	$1.5 \mathrm{hr} \mathrm{L} ,1 \times 4 \mathrm{hr} \mathrm{B}$	simple conversion
Organic Chemistry Laboratory 2	255	3	2550	2	$1.5 \mathrm{hr} \mathrm{L} ,1 \times 4 \mathrm{hr} \mathrm{B}$	simple conversion
Organic Chemistry for Majors 1	---	---	2610	4	$3 \mathrm{hr} \mathrm{L}$,	NEW course sequence for
Organic Chemistry for Majors 2	---	---	2620	4	$3 \mathrm{hr} \mathrm{L}$,	majors
Honors Organic Chemistry 1	251H	4	$\begin{aligned} & 2910 \mathrm{H} \\ & 2920 \mathrm{H} \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 3 \mathrm{hrL} \text { L, } 1 \mathrm{hr} \mathrm{R} \\ & 3 \mathrm{hr} \mathrm{~L}, 1 \mathrm{hr} \mathrm{R} \end{aligned}$	simple conversion
Honors Organic Chemistry 2	252H	4				
Honors Organic Chemistry 3	253 H	4				
Honors Organic Chemistry Laboratory 1	254H	3	2940H	2	$1.5 \mathrm{hrL}, 1 \times 4 \mathrm{hr} \mathrm{B}$	simple conversion
Honors Organic Chemistry Laboratory 2	255H	3	2950H	2	$1.5 \mathrm{hrL} ,1 \times 4 \mathrm{hr} \mathrm{B}$	simple conversion
Fundamentals of Physical Chemistry 1	520	3	4200	3	$3 \mathrm{hr} \mathrm{L}$,1 hr R	expanded content
Fundamentals of Physical Chemistry 2	521	3	4210	3	$3 \mathrm{hr} \mathrm{L}$,	expanded content

Physical Chemistry Laboratory 1	541	3	4410	3	$1 \mathrm{hr} \mathrm{L} ,2 \times 3 \mathrm{hr} \mathrm{B}$	simple conversion
Physical Chemistry Laboratory 2	542	3				
Elective Chemistry Courses for B.A. Chemistry degree						
Physical Chemistry 1	530		$\begin{aligned} & 4300 \\ & 4310 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \mathrm{hrL}, 1 \mathrm{hr} \mathrm{R} \\ & 3 \mathrm{hrL}, 1 \mathrm{hr} \mathrm{R} \end{aligned}$	simple conversion
Physical Chemistry 2	531	3				
Physical Chemistry 3	532	3				
Analytical Chemistry 2: Instrumental Analysis	587	3	4870	3	3 hr L	simple conversion
Laboratory Practice in Instrumental Analysis	588	3	4880	2	$2 \times 3 \mathrm{hr} \mathrm{B}$	simple conversion
Nanochemistry	611	3	5520	3	3 hr L	simple conversion
Spectroscopic Methods in Organic Chemistry	632	3	5420	3	3 hr L	simple conversion
Carbohydrate Chemistry	635	3	5430	3	3 hr L	simple conversion
Atmospheric Chemistry	641	3	6550	1.5	3 hr L	simple conversion
Introduction to Computational Chemistry	644	3	5440	3	3 hr L	simple conversion
Inorganic Chemistry 1	651	3	3510	3	$3 \mathrm{hr} \mathrm{L}$,	selected content
Inorganic Chemistry 2	652	3				
Inorganic Chemistry Laboratory	755	3	4550	2	$2 \times 3 \mathrm{hr} \mathrm{B}$	simple conversion (undergraduate only)
Introduction to Quantum Chemistry and Spectroscopy	673	3	5730	3	3 hr L	simple conversion
Individual Studies	693	0-15	5193	0-15	arranged	simple conversion
Undergraduate Research	699	1-10	4998	1-10	arranged	undergraduate research (letter grade)
Undergraduate Research (thesis)	699	1-10	4999	1-10	arranged	undergraduate thesis (letter grade)
Honors Research	783H	3-10	4998H	1-10	arranged	honors undergraduate research (letter grade)
Honors Research (thesis)	783H	3-10	4999H	1-10	arranged	honors undergraduate thesis (letter grade)
Survey of Instrumental Methods			6110	1.5	3 hr L	re-envisioned course
Analytical Data Treatment: Statistical and Numerical Analysis			6120	1.5	3 hr L	re-envisioned course

Chemistry at the Interface of Biology		6210	1.5	3 hr L	re-envisioned course
Fundamentals of Coordination Chemistry		6310	1.5	3 hr L	re-envisioned course
Synthetic Principles in Inorganic Chemistry		6320	1.5	3 hr L	re-envisioned course
Group Theory and Bonding		6330	1.5	3 hr L	re-envisioned course
Physical Methods in Inorganic Chemistry		6340	1.5	3 hr L	re-envisioned course
Basic Organic Reaction Mechanisms		6410	1.5	3 hr L	re-envisioned course
Stereochemistry and Conformational Analysis		6420	1.5	3 hr L	re-envisioned course
Introduction to Organic Synthesis		6430	1.5	3 hr L	re-envisioned course
Introduction to Physical Organic Chemistry		6440	1.5	3 hr L	re-envisioned course
Quantum Mechanics and Spectroscopy		6510	1.5	3 hr L	re-envisioned course
Thermodynamics		6520	1.5	3 hr L	re-envisioned course
Kinetics		6530	1.5	3 hr L	re-envisioned course
Introduction to Electronic Structure		6540	1.5	3 hr L	re-envisioned course
Electrochemistry	821	7120	3	3 hr L	re-envisioned course
Fundamentals and Techniques of Separation Science	822	7130	3	3 hr L	re-envisioned course
Analytical Spectroscopy	823	7140	3	3 hr L	re-envisioned course
Mass Spectrometry	825	7150	3	3 hr L	re-envisioned course
Nuclear Magnetic Resonance	824	7160	3	3 hr L	re-envisioned course
Analytical Surface Science		7170	1.5	3 hr L	re-envisioned course
Organometallic Chemistry		7320	1.5	3 hr L	re-envisioned course
Solid State Chemistry		7330	1.5	3 hr L	re-envisioned course
Diffraction Methods		7340	1.5	3 hr L	re-envisioned course
Inorganic Photochemistry		7350	1.5	3 hr L	re-envisioned course
Bioinorganic Chemistry		7360	1.5	3 hr L	re-envisioned course
Advanced Nanochemistry		7370	1.5	3 hr L	re-envisioned course
Inorganic Materials		7380	1.5	3 hrL	re-envisioned course
Advanced Inorganic Laboratory	755	7390	1.5	arranged	re-envisioned course
Advanced Organic Synthesis		7430	1.5	3 hr L	re-envisioned course
Kinetics, Catalysis and Transition State		7440	1.5	3 hr L	re-envisioned course

Theory						
Metals in Organic Synthesis			7450	1.5	3 hr L	re-envisioned course
Advanced Organic Reaction Mechanisms			7460	1.5	3 hr L	re-envisioned course
Computational Chemistry	944		7470	1.5	3 hr L	re-envisioned course
Advanced Organic Synthesis Laboratory	835,836		7480	3	arranged	re-envisioned course
Advanced Molecular Quantum Mechanics and Spectra			7520	3	3 hr L	re-envisioned course
Spectra and Structure of Molecules	866		7530	3	3 hr L	re-envisioned course
Chemical Dynamics	876		7540	3	3 hr L	re-envisioned course
Statistical Thermodynamics	880		7550	3	3 hr L	re-envisioned course
Introduction to Astrochemistry			7560	1.5	3 hr L	re-envisioned course
Aerosol Science			7570	1.5	3 hr L	re-envisioned course
Lasers, Optics and Optical Instrumentation		7580	1.5	3 hr L	re-envisioned course	
Molecular Simulations of Materials			7590	3	3 hr L	re-envisioned course

Total Hours:

1. You must earn at least a C - in a course in order for it to be listed on your major. However, you must achieve a 2.00 cumulative pointhour ratio for all major course work. If you earn a D+, D, or an E in a course on your major program, the course cannot be counted toward the major. Your chemistry advisor will decide whether you should repeat the course, delete the course from your major, or substitute another course. Courses taken on a pass/non-pass basis may not be used on the major.
2. Elective courses can be chosen in consultation with your chemistry advisor. All courses comprising your major must be approved in writing by your faculty advisor on a form sent to the office of the College of the Arts and Sciences. Changes in your major program may be made only with the written approval of your faculty advisor. They must be filed in the Arts and Sciences office at the time approval is given.

Courses required to support the major:

The Bachelor of Arts Degree in Chemistry (B.A.)

The Bachelor of Arts curriculum is intended for students who want to have a background in chemistry as a basis for future work in other areas of science, such as the life sciences, or in such professional areas as medicine or veterinary medicine. Chemistry 1610 - 1620 is the recommended general chemistry sequence for chemistry majors who present high school chemistry for entrance, although qualified students are strongly urged to take the honors general chemistry sequence, Chemistry $1910 \mathrm{H}-1920 \mathrm{H}$, instead. (Chemistry $1210-1220$ are acceptable, but are not the preferred sequence for chemistry majors.) Organic Chemistry and Quantitative Analysis 2210 (or 2210 H) are taken in the second year. As with general chemistry, Chemistry $2610-2620$ is the recommended organic chemistry lecture sequence for chemistry majors, although qualified students are strongly urged to take the honors sequence, Chemistry $2910 \mathrm{H}-2920 \mathrm{H}$, instead. (Chemistry $2510-2520$ are acceptable, but are not the preferred organic lecture sequence for chemistry majors.) The Organic Chemistry lab experience is either the $2540-2550$ sequence or the honors version ($2940 \mathrm{H}-2950 \mathrm{H}$). Physical Chemistry $4200-4210$ and Physical Chemistry Laboratory 4410 are required; Chemistry $4300-4310$ may be taken instead of $4200-$ 4210 with the proper math prerequisite. The major is completed by 9 credit hours of advanced science electives which must include at least $\mathbf{3}$ credit hours of chemistry courses. Advanced science electives must be approved by the undergraduate chemistry advisors. Examples of science electives include: any un-required, graded $4000-6000$ level courses in Chemistry; 4000 or 5000 level courses in Astronomy, Biochemistry, Plant Biology, Molecular Genetics, Earth Sciences, Microbiology, Physics, and EEOB; and most courses in Mathematics at the $2000-4000$ level. Not more than six hours of undergraduate research (Chemistry 4998/4999, or honors versions) may be used to fulfill the science elective requirement. A sample curriculum for semesters is given below. Your advisors will work with you to design your ideal curriculum. You may take your general elective (GE) courses in a much different order than is shown here. Check with your chemistry advisor to design a schedule for your chemistry, math, physics, and other science courses.

Autumn Semester (Year 1)	Spring Semester (Year 1)		
General Chemistry 1 (1910H, 1610, 1210)	5	General Chemistry 2 (1920H, 1620, 1220)	5
Calculus 1 (Math 1151)	5	Calculus 2 (Math 1152)	5
GE Elective (e.g. biological sciences)	4	GE Elective	3
GE Elective	3	GE Elective	3
Survey	1		
	18		16
Autumn Semester (Year 2)		Spring Semester (Year 2)	
Analytical Chemistry 1 (2210H, 2210)	5	Organic Chemistry 2 (2920H, 2620, 2520)	4
Organic Chemistry 1 (2910H, 2610, 2510)	4	Organic Chemistry Laboratory 2 (2950H, 2550)	2
Organic Chemistry Laboratory 1 (2940H, 2540)	2	Introductory Physics II (1201 or 1251)	5
Introductory Physics I (1200 or 1250)	5	GE Elective	3
	16		14
Autumn Semester (Year 3)		Spring Semester (Year 3)	
Physical Chemistry 1 (4200)	3	Physical Chemistry 2 (4210)	3
Advanced Chemistry Elective	3	Physical Chemistry Laboratory (4410)	3
Elective	3	Elective	3
GE Elective	3	GE Elective	3
		GE Elective	3
	12		15
Autumn Semester (Year 4)		Spring Semester (Year 4)	
Advanced Science Elective (e.g. Biochem 4511 ${ }^{\text {a }}$)	3	Advanced Science Elective	3
Elective	3	Elective	3
Elective	3	GE Elective	3
GE Elective	3	GE Elective	3
GE Elective	3	GE Elective	3
	15		15
${ }^{\text {a }}$ Biochemistry $4511=4$ credit hours			

MAJOR PROGRAM FORM
 Colleges of the Arts and Sciences, The Ohio State University

Telephone No.: \qquad Name.n: \qquad Expected Qtr. and Yr. of Graduation: \qquad

Courses Hours Quarter Taken

Chem 221	5
Chern 251	4
Chem 252	4
Chem 254	3
Chem 255	3
Chem 520	3
Chem 521	3
Chem 541	3
Chem (Adv. Sci. Elective)	
Chem (Adv. Sci, Elective)	
(Adv. Sci. Elective)	
(Adv. Sci. Elective)	

Total Hours:

1. You must earn at least a C - in a course in order for it to be listed on your major. However, you must achieve a 2.00 cumulative point-hour ratio for all major course work. If you earn a D+, D, or an E in a course on your major program, the course cannot be counted toward the major. Your faculty adviser will decide whether you should repeat the course, delete the course from your major, or substitute another course. Courses taken on a pass/non-pass basis may not be used on the major.
2. All courses comprising your major must be approved in writing by your faculty adviser on a form sent to the office of the Colleges of the Arts and Sciences. Changes in your major program may be made only with the written approval of your faculty adviser. They must be filed in the Arts and Sciences office at the time approval is given.

Courses required to support the major:

Math	151	152	153
Physics	$111 \ldots$	112	113
or	131	132	133

The Bachelor of Arts Degree in Chemistry (B.A.)

The Bachelor of Arts curriculum is intended for students who want to have a background in chemistry as a basis for future work in other areas of science, such as the life sciences, or in such professional areas as medicine or veterinary medicine. Chemistry 161,162 , and 163 is the recommended general chemistry sequence for chemistry majors who present high school chemistry for entrance, although qualified students are strongly urged to take the honors general chemistry sequence, Chemistry $201 \mathrm{H}, 202 \mathrm{H}$ and 203 H , instead. (Chemistry 121, 121, and 123 are acceptable, but not the preferred sequence for chemistry majors.) Organic Chemistry $251,252,254$, and 255 (or $251 \mathrm{H}, 252 \mathrm{H}, 254 \mathrm{H}, 255 \mathrm{H}$) and Quantitative Analysis 221 (or 221 H) are taken in the second year. Physical Chemistry 520-521 and Physical Chemistry Laboratory 541 are required; Chemistry 530 and 531 may be taken instead of $520-521$ with the proper math prerequisite. The major is completed by $\mathbf{1 6}$ hours of advanced science electives which must include at least $\mathbf{6}$ hours of chemistry courses. Advanced science electives must be approved by the undergraduate chemistry advisor. Examples of science electives include: Chemistry 253 and any unrequired graded 500-700 level courses in Chemistry; 500 or 600 level courses in Astronomy, Biochemistry, Plant Biology, Molecular Genetics, Earth Sciences, Microbiology, Physics, and EEOB; Chemical Engineering 520, 521,610; Computer and Information Science 221; most courses in Mathematics at the 200-500 level; and Statistics 427, 428. Not more than six hours of Chemistry 699 may be used to fulfill the science elective requirement. A sample curriculum based on the quarter system is given below. The curriculum will change when Ohio State changes to semesters in Summer 2012, although the overall curriculum content will be very similar. Your advisers will work with you to design a curriculum transition plan. You may take your GEC courses in a much different order than is shown here. Check with your chemistry advisor to design a schedule for your chemistry, math, physics, and other science courses.

Autumn First Year

Chem 201H, 161, or 121
Math 151
GEC-social science

Autumn Second Year

Chem 251 H or 251 (org. lec) 4
Chem 221H or 221 (quant) 5
Physics 111 or 131
5

Autumn Third Year
Advanced chem elective
GEC-foreign language
GEC-history
Advanced science elective

Autumn Fourth Year
Chemistry 541 (p.chem lab) 3
GEC-foreign language 5
Elective 5
Elective $\underline{3}$
5 5 $\underline{5}$ 15

Winter First Year

Winter Second Year
Chem 252 H or 252 (org. lec) 4 Chem 254 H or 254 (org. lab) 3 Physics 112 or 1325
GEC-2nd writing course $\underline{5}$

$$
17
$$

Winter Third Year

Chem 520 (p.chem lecture) 3
GEC-foreign language 5
GEC-arts \& human (Lit) $\underline{5}$
13

Winter Fourth Year

Advanced science elective 5
GEC-contemporary world 5
Elective $\underline{5}$

Spring First Year

Chem $203 \mathrm{H}, 163$, or 1235
Math 1535
GEC-English $110 \underline{5}$ 15

Spring Second Year

Adv. chemistry elective	4
Chem 255 H or 255 (org. lab)	3
Physics 113 or 133	5
GEC-history	$\underline{5}$
	17

Spring Third Year
Chem 521 (p.chem lecture) 3
GEC-foreign language 5
GEC-social science $\underline{5}$ 13

Spring Fourth Year
GEC-arts \& human (VPA) 5
Elective 5
Elective $\underline{5}$

The GEC Social Diversity and International Issues requirements should be fulfilled by selecting courses that overlap with another GEC category, such as the Second Writing Course, Social Sciences, Arts and Humanities, and/or Historical Study. Otherwise additional credit hours may be added to the minimum required for the degree.

Curriculum map for the B.A. and B.S. degrees in Chemistry

Program outcomes ($B=$ beginning, $I=$ intermediate, $A=$ advanced)

1. Students solve state-of-the-art chemistry problems, working both individually and in groups, and these problems will exemplify current disciplinary and interdisciplinary principles as well as modern pedagogical practice.
2. Students develop effective skills in oral and written communication of scientific knowledge.
3. Students plan experimental procedures, carry out chemical procedures, use laboratory equipment, analyze data and prepare laboratory reports that reinforce current chemical practices.
4. Students follow safe practices in the laboratory and demonstrate scientifically ethical practices.
5. Students retrieve information from the chemical literature, and become proficient in online database searching.
6. Students use modern computer software for graphing, manipulation of symbolic mathematical expressions, and quantum chemical calculations.

	Chemistry Program Goals					
Course	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Chemistry 1210	B	B	B	B	B	B
Chemistry 1220	B	B	B	B	B	B
Chemistry 1610	I	I	I	B	I	I
Chemistry 1620	I	I	I	B	I	I
Chemistry 1910H	I	I	I	B	I	I
Chemistry 1920H	I	I	I	B	I	I
Chemistry 2210	I	I	I	I	I	I
Chemistry 2210H	I	I	I	I	I	I
Chemistry 2510	I	I	I		I	I
Chemistry 2520	I	I	I		I	I
Chemistry 2540	I	I	I	I	I	I
Chemistry 2540H	A	A	A	A	A	A
Chemistry 2550	I	I	I	I	I	I
Chemistry 2550H	A	A	A	A	A	A
Chemistry 2610	I	I	I		I	I
Chemistry 2620	A	A	I		A	
Chemistry 2910H	A	A		A	A	
Chemistry 2920H	A	A	A		A	A
Chemistry 3510	A	A	A		A	A
Chemistry 4200	A	A	A		A	A
Chemistry 4210	A	A	A		A	A
Chemistry 4300	A	A	A		A	A
Chemistry 4310	A	A	A	A	A	A
Chemistry 4410	A	A	A	A	A	A
Chemistry 4550	A	A	A		A	A
Chemistry 4870	A	A	A	A	A	A
Chemistry 4880	A	A	A		A	
Biochemistry 4511	Chemistry 5000 and above	A	A	A	A	A
	A					

Transition Policy for the Department of Chemistry

Students who begin their degree training under quarters will not be penalized as we transition to semesters. Our two chemistry advisors are available to help design the ideal program for each of our 400+ chemistry majors in order to facilitate an optimum transition.

In general, our current quarter courses are typically either a one-quarter class or a three-quarter sequence across an entire academic year. These courses will be converted to one-semester or two-semester courses, respectively. The few two-quarter course sequences have been converted to one-semester courses.

Also, our chemistry majors and minors are typically successful in completing an entire sequence of either general or organic chemistry in the autumn-winter-spring academic year. As was evident with the various quarter and semester plans provided with this package, most sequences would normally end in the spring term of any academic year.

In general and organic chemistry, we will continue our current practice of offering multiple courses in the summer term - for example, general chemistry (121-122-123) courses are offered in each of the four quarters. We anticipate continuing these trends for general chemistry and also continuing to offer some organic chemistry in the summer session. Moreover, in the normal academic year, we will offer general and organic chemistry courses in both semesters.

While we have created majors-only versions of general and organic chemistry, chemistry majors are eligible to take the Honors or the regular sequences instead of the majors-only version. Students who are off-sequence for whatever reason are not penalized in any way.

If space is available and enrollment demand is sufficiently evident, we plan on offering multiple sections of high enrollment courses in both semesters.

For advanced science electives, there will be multiple 5000 -level and above courses for students to select. As our graduate program is sizeable, we will continue to offer graduate-level courses for our upper-level undergraduate students to select as electives.

There will be bridge or transition courses for general chemistry and organic chemistry for a short period of time, and these may be offered in alternate formats, including 7-week half-semesters. Students who have credit for Chemistry 121-122 under quarters will be very prepared for the second semester of general chemistry (1220). Similarly, students who have credit for Chemistry $251-252$ will be prepared for the second semester (Chemistry 2520). Bridge or transition courses will be available for students who have not taken the middle quarter of a three-quarter sequence in order for those students to be successful in the second semester of the year-long sequence. However, these options for general chemistry courses will depend heavily on laboratory utilization as anticipated enrollment increases for the onset of semesters will require some assessment of priorities.

